Niyogi CAL Strains-ARC
CAL007_03_36
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance.
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_03_45
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_03_46
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_03_47
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_04_04
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_04_11
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance.
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_04_12
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_04_14
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_04_15
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_04_17
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_04_28
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_04_34
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_04_35
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_04_36
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_04_38
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance.
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL007_04_39
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL010_01_03
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455
CAL010_01_11
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455
CAL010_01_13
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455
CAL010_01_17
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455
CAL010_01_18
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance.
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455
CAL010_01_19
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455
CAL010_01_20
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455
CAL010_01_22
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance.
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455
CAL010_01_23
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455
CAL010_01_24
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455
CAL010_01_43
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455
CAL010_01_45
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance. Plasmid-associated lesion was identified by whole-genome sequencing (Wakao et al., 2021).
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455
CAL010_01_46
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance.
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455
CAL010_01_47
$30.00
$30.00
From Setsuko Wakao, Niyogi lab, University of California-Berkeley, 2021
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with KpnI-linearized pMS188 plasmid (Schroda et al., 2002) conferring zeocin resistance.
Wakao S, Shih PM, Guan K, Schackwitz W, Ye J, Patel D, Shih RM, Dent RM, Chovatia M, Sharma A, Martin J, Wei CL, Niyogi KK (2021) Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Gen. 17: e1009725
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445–455
- 1
- 2
- 3
- …
- 14
- Next Page»