Niyogi CAL Strains-Dent
CAL026_02_01
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_02
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_05
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_08
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_09
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_10
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_11
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_12
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_13
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_16
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_17
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_19
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_21
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_27
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_30
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_31
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_33
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_35
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_37
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_39
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_41
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_42
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_44
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_46
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_47
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_02_48
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_03_15
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_03_16
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_03_18
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
CAL026_03_19
$30.00
$30.00
From Rachel Dent, Niyogi lab, University of California-Berkeley, 2011
The CAL collection of mutants affected in photosynthesis and/or photoprotection was generated in the Niyogi laboratory at UC-Berkeley by Rachel Dent et al. (Dent et al., 2005; Dent et al., 2015). This mutant was generated by insertional mutagenesis of the wild-type strain 4A+ (mt+, 137c background; CC-4051) using glass bead transformation with BamHI-linearized pSP124S plasmid (Lumbreras et al., 1998) conferring zeocin resistance. Flanking sequence adjacent to the resistance gene was isolated by a PCR-based approach.
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82: 337-351
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137: 545-556
Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14: 441–447
- «Previous Page
- 1
- …
- 6
- 7
- 8
- 9
- 10
- …
- 14
- Next Page»