Strains
CC-5782 chip-2 mt-
$30.00
$30.00
From Sunjoo Joo, Thamali Kariyawasam, and Jae-Hyeok Lee, University of British Columbia, December 2021
Joo, S., Kariyawasam, T., Kim, M., Jin, ES., Goodenough, U.W., and Lee, J.-H. (2022) Sex-linked deubiquitinase establishes uniparental transmission of chloroplast DNA.
CC-5783 nri1 mt-
$30.00
$30.00
From Jacob Munz, Moyan Jia, Sunjoo Joo, and Jae-Hyeok Lee, University of British Columbia, December 2021
Jia, M., Munz, J., Lee, J., Shelley, N., Xiong, Y., Joo, S., Jin, ES., and Lee, J.-H. (2022) The bHLH family NITROGEN-REPLETION INSENSITIVE1 represses nitrogen starvation-induced responses in Chlamydomonas reinhardtii.
From Jacob Munz, Moyan Jia, Sunjoo Joo, and Jae-Hyeok Lee, University of British Columbia, December 2021
Jia, M., Munz, J., Lee, J., Shelley, N., Xiong, Y., Joo, S., Jin, ES., and Lee, J.-H. (2022) The bHLH family NITROGEN-REPLETION INSENSITIVE1 represses nitrogen starvation-induced responses in Chlamydomonas reinhardtii.
CC-5785 5-855 mt-
$30.00
$30.00
From Jacob Munz, Moyan Jia, Sunjoo Joo, and Jae-Hyeok Lee, University of British Columbia, December 2021
Jia, M., Munz, J., Lee, J., Shelley, N., Xiong, Y., Joo, S., Jin, ES., and Lee, J.-H. (2022) The bHLH family NITROGEN-REPLETION INSENSITIVE1 represses nitrogen starvation-induced responses in Chlamydomonas reinhardtii.
CC-5786 ∆KU80-C6 mt+ [PH151]
$30.00
$30.00
From Irina Sizova, Peter Hegemann lab, Humboldt University of Berlin, December 2021
This is a KU80 disruption strain, generated with SpCas9 based on the CC-125 strain.
Background strain: CC-125 mt+
Nuclease: SpCas9
Target gene: KU80 Cre10.g423800
Target sequence: CTCAGTGCCGTACAGCACCA
Marker: pAphVII (pPH360)
This strain was published in Sizova et al https://doi.org/10.1093/g3journal/jkab114.
Overview of all strains from the Hegemann lab http://www.chlamy.de/strains
Sizova I, Kelterborn S, Verbenko V, Kateriya S, Hegemann P. Chlamydomonas POLQ is necessary for CRISPR/Cas9-mediated gene targeting. G3 (Bethesda). 2021 Apr 9;11(7):jkab114. doi: 10.1093/g3journal/jkab114. Epub ahead of print. PMID: 33836052; PMCID: PMC8495919.
CC-5787 ∆POLQ-E2 mt+ [PH152]
$30.00
$30.00
Deposited by Irina Sizova, Peter Hegemann lab, Humboldt University of Berlin,
December 2021
This is a POLQ disruption strain, generated with SpCas9 based on ChR1 disruption strain in CC-3403 [PH55].
Background strain: CC-3403, ChR1 disruption strain [PH55]
Nuclease: SpCas9
Target gene: POLQ Cre16.g664300
Target sequence: GCATCAGTTGATGGTGACGG
Marker: pAphVII (pPH360)
pBle
This strain was published in Sizova et al https://doi.org/10.1093/g3journal/jkab114.
Overview of all strains from the Hegemann lab http://www.chlamy.de/strains
Visit www.chlamy.de for more info or contact CRISPR@chlamy.de
Sizova I, Kelterborn S, Verbenko V, Kateriya S, Hegemann P. Chlamydomonas POLQ is necessary for CRISPR/Cas9-mediated gene targeting. G3 (Bethesda). 2021 Apr 9;11(7):jkab114. doi: 10.1093/g3journal/jkab114. Epub ahead of print. PMID: 33836052; PMCID: PMC8495919.
CC-5791 ∆KU80-C4 mt+ [PH150]
$30.00
$30.00
From Irina Sizova, Peter Hegemann lab, Humboldt University of Berlin, December 2021
This is a KU80 disruption strain, generated with SpCas9 based on the CC125 strain.
Background strain: CC-125 mt+
Nuclease: SpCas9
Target gene: KU80 Cre10.g423800
Target sequence: CTCAGTGCCGTACAGCACCA
Marker: pAphVII (pPH360)
This strain was published in Sizova et al https://doi.org/10.1093/g3journal/jkab114.
Overview of all strains from the Hegemann lab http://www.chlamy.de/strains
Visit www.chlamy.de for more info or contact CRISPR@chlamy.de
Sizova I, Kelterborn S, Verbenko V, Kateriya S, Hegemann P. Chlamydomonas POLQ is necessary for CRISPR/Cas9-mediated gene targeting. G3 (Bethesda). 2021 Apr 9;11(7):jkab114. doi: 10.1093/g3journal/jkab114. Epub ahead of print. PMID: 33836052; PMCID: PMC8495919.
CC-5792 ∆POLQ-G2 mt+ [PH019]
$30.00
$30.00
From Irina Sizova, Peter Hegemann lab, Humboldt University of Berlin, December 2021
This is a POLQ disruption strain, generated with SpCas9 based on the CC125 strain.
Background strain: CC-125 mt+
Nuclease: SpCas9
Target gene: POLQ Cre16.g664300
Target sequence: GCCGCGCCATCCACATTGCT
Marker: pAphVII (pPH360)
This strain was published in Sizova et al https://doi.org/10.1093/g3journal/jkab114.
Overview of all strains from the Hegemann lab http://www.chlamy.de/strains
Visit www.chlamy.de for more info or contact CRISPR@chlamy.de
Sizova I, Kelterborn S, Verbenko V, Kateriya S, Hegemann P. Chlamydomonas POLQ is necessary for CRISPR/Cas9-mediated gene targeting. G3 (Bethesda). 2021 Apr 9;11(7):jkab114. doi: 10.1093/g3journal/jkab114. Epub ahead of print. PMID: 33836052; PMCID: PMC8495919.
CC-5793 ∆KU70-C8 mt+ [PH148]
$30.00
$30.00
From Irina Sizova, Peter Hegemann lab, Humboldt University of Berlin, December 2021
This is a ∆KU70 disruption strain, generated with SpCas9 based on the CC125 strain.
Background strain: CC-125 mt+
Nuclease: SpCas9
Target gene: KU70 Cre13.g607500
Target sequence: GTCGTTTGAGAACACCACAA
Marker: pAphVII (pPH360)
This strain was published in Sizova et al https://doi.org/10.1093/g3journal/jkab114.
Overview of all strains from the Hegemann lab http://www.chlamy.de/strains
Visit www.chlamy.de for more info or contact CRISPR@chlamy.de
Sizova I, Kelterborn S, Verbenko V, Kateriya S, Hegemann P. Chlamydomonas POLQ is necessary for CRISPR/Cas9-mediated gene targeting. G3 (Bethesda). 2021 Apr 9;11(7):jkab114. doi: 10.1093/g3journal/jkab114. Epub ahead of print. PMID: 33836052; PMCID: PMC8495919.
From Irina Sizova, Peter Hegemann lab, Humboldt University of Berlin, December 2021
This is a ∆KU70 disruption strain, generated with SpCas9 based on the CC125 strain.
Background strain: CC-125 mt+
Nuclease: SpCas9
Target gene: KU70 Cre13.g607500
Target sequence: GTCGTTTGAGAACACCACAA
Marker: pAphVII (pPH360)
This strain was published in Sizova et al https://doi.org/10.1093/g3journal/jkab114.
Overview of all strains from the Hegemann lab http://www.chlamy.de/strains
Visit www.chlamy.de for more info or contact CRISPR@chlamy.de
Sizova I, Kelterborn S, Verbenko V, Kateriya S, Hegemann P. Chlamydomonas POLQ is necessary for CRISPR/Cas9-mediated gene targeting. G3 (Bethesda). 2021 Apr 9;11(7):jkab114. doi: 10.1093/g3journal/jkab114. Epub ahead of print. PMID: 33836052; PMCID: PMC8495919.
CC-5795 sak1 mt+
$30.00
$30.00
From Setsuka Wakoa, Niyogi lab, University of California-Berkeley, January 2022
Insertion of zeocin resistance at Chr17, Cre17.g741300 and back-crossed 5 times.
Ledford HK, Chin BL, Niyogi KK. Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryot Cell. 2007 Jun;6(6):919-30. doi: 10.1128/EC.00207-06. Epub 2007 Apr 13. PMID: 17435007; PMCID: PMC1951523.
Wakao S, Chin BL, Ledford HK, Dent RM, Casero D, Pellegrini M, Merchant SS, Niyogi KK. Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii. Elife. 2014 May 23;3:e02286. doi: 10.7554/eLife.02286. PMID: 24859755; PMCID: PMC4067076.
CC-5796 D4cia5/GYD mt-
$30.00
$30.00
From Antonia Schad, University of Leipzig, January 2022
This strain was obtained from a conventional crossing using two mutants: LMJ.SG0182.017965 (deficient in the gene for glycolate dehydrogenase) and CC-2702 cia5 (deficient in carbon concentrating mechanisms). Prior to this, both mutant strains were crossed with wild type strains to improve fitness: LMJ.SG0182.017965 x SAG 11-32b and CC-2702 cia5 x CC-410.
D4cia5/GYD is a double mutant deficient in the genes for cia5/CCM1 and GYD1. Cia5 has previously been identified as master regulator of the carbon concentrating mechanism in Chlamydomonas (Fukuzawa et al, 2001; Xiang et al, 2001). GYD1 is the glycolate dehydrogenase that converts glycolate from photorespiration into glyoxylate. The strain requires elevated CO2 for growth on minimal medium due to its photorespiratory phenotype. It grows well on acetate medium. Since it contains a paromomycin resistance cassette, it can also be cultured on medium with antibiotic (Zhang et al., 2014).
Schad A, Rössler S, Nagel R, Wagner H, Wilhelm C. Crossing and selection of Chlamydomonas reinhardtii strains for biotechnological glycolate production. Appl Microbiol Biotechnol. 2022 May 5. doi: 10.1007/s00253-022-11933-y. Epub ahead of print. PMID: 35511277.
CC-5797 D5cia5/GYD mt+
$30.00
$30.00
From Antonia Schad, University of Leipzig, January 2022
This strain was obtained from a conventional crossing using two mutants: LMJ.SG0182.017965 (deficient in the gene for glycolate dehydrogenase) and CC-2702 cia5 (deficient in carbon concentrating mechanisms). Prior to this, both mutant strains were crossed with wild type strains to improve fitness: LMJ.SG0182.017965 x SAG 11-32b and CC-2702 cia5 x CC-410.
D5cia5/GYD is a double mutant deficient in the genes for cia5/CCM1 and GYD1. Cia5 has previously been identified as master regulator of the carbon concentrating mechanism in Chlamydomonas (Fukuzawa et al, 2001; Xiang et al, 2001). GYD1 is the glycolate dehydrogenase that converts glycolate from photorespiration into glyoxylate. The strain requires elevated CO2 for growth on minimal medium due to its photorespiratory phenotype. It grows well on acetate medium. Since it contains a paromomycin resistance cassette, it can also be cultured on medium with antibiotic (Zhang et al., 2014).
Schad A, Rössler S, Nagel R, Wagner H, Wilhelm C. Crossing and selection of Chlamydomonas reinhardtii strains for biotechnological glycolate production. Appl Microbiol Biotechnol. 2022 May 5. doi: 10.1007/s00253-022-11933-y. Epub ahead of print. PMID: 35511277.
CC-5798 CAH4/5-1
$30.00
$30.00
From Jim Moroney, Louisiana State University, January 2022
RNAi strain with reduced expression of two mitochondrial carbonic anhydrases, CAH4 and CAH5.
Rai AK, Chen T, Moroney JV. Mitochondrial carbonic anhydrases are needed for optimal photosynthesis at low CO2 levels in Chlamydomonas. Plant Physiol. 2021 Nov 3;187(3):1387-1398. doi: 10.1093/plphys/kiab351. PMID: 34618049; PMCID: PMC8566214.
CC-5799 CAH4/5-2
$30.00
$30.00
From Jim Moroney, Louisiana State University, January 2022
RNAi strain with reduced expression of two mitochondrial carbonic anhydrases, CAH4 and CAH5.
Rai AK, Chen T, Moroney JV. Mitochondrial carbonic anhydrases are needed for optimal photosynthesis at low CO2 levels in Chlamydomonas. Plant Physiol. 2021 Nov 3;187(3):1387-1398. doi: 10.1093/plphys/kiab351. PMID: 34618049; PMCID: PMC8566214.
CC-5800 CAH4/5-3
$30.00
$30.00
From Jim Moroney, Louisiana State University, January 2022
RNAi strain with reduced expression of two mitochondrial carbonic anhydrases, CAH4 and CAH5.
Rai AK, Chen T, Moroney JV. Mitochondrial carbonic anhydrases are needed for optimal photosynthesis at low CO2 levels in Chlamydomonas. Plant Physiol. 2021 Nov 3;187(3):1387-1398. doi: 10.1093/plphys/kiab351. PMID: 34618049; PMCID: PMC8566214.
CC-5801 bsti-1
$30.00
$30.00
From Jim Moroney, Louisiana State University, January 2022
RNAi strain with reduced expression of three BST genes in Chlamydomonas, BST1, BST2 and BST3. BST1, BST2 and BST3 encode thylakoid membrane proteins thought to transport HCO3- across the thylakoid membrane.
Mukherjee A, Lau CS, Walker CE, Rai AK, Prejean CI, Yates G, Emrich-Mills T, Lemoine SG, Vinyard DJ, Mackinder LCM, Moroney JV. Thylakoid localized bestrophin-like proteins are essential for the CO2 concentrating mechanism of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16915-16920. doi: 10.1073/pnas.1909706116. Epub 2019 Aug 7. PMID: 31391312; PMCID: PMC6708349.
CC-5802 bsti-4
$30.00
$30.00
From Jim Moroney, Louisiana State University, January 2022
RNAi strain with reduced expression of three BST genes in Chlamydomonas, BST1, BST2 and BST3. BST1, BST2 and BST3 encode thylakoid membrane proteins thought to transport HCO3- across the thylakoid membrane.
Mukherjee A, Lau CS, Walker CE, Rai AK, Prejean CI, Yates G, Emrich-Mills T, Lemoine SG, Vinyard DJ, Mackinder LCM, Moroney JV. Thylakoid localized bestrophin-like proteins are essential for the CO2 concentrating mechanism of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16915-16920. doi: 10.1073/pnas.1909706116. Epub 2019 Aug 7. PMID: 31391312; PMCID: PMC6708349.
CC-5803 cia6
$30.00
$30.00
From Jim Moroney, Louisiana State University, January 2022
Cia6 is an insertional mutant that grows well on high CO2 but poorly under low CO2. The Ble-R insert is in a gene that aligns with methyltransferases. The pyrenoid is also defective in this strain.
Ma Y, Pollock SV, Xiao Y, Cunnusamy K, Moroney JV. Identification of a novel gene, CIA6, required for normal pyrenoid formation in Chlamydomonas reinhardtii. Plant Physiol. 2011 Jun;156(2):884-96. doi: 10.1104/pp.111.173922. Epub 2011 Apr 28. PMID: 21527423; PMCID: PMC3177283.
From Pinfen Yang, Marquette University, February 2022
The strain was generated by glass beads-transformation into pf27 (CC-1387, mt+) of a plasmid conferring Hygromycin-resistance and coding for ARMC2 carrying a triple tag including NeonGreen, 3 HA and 6 His. It was selected for hygromycin, flagellar motility and NeonGreen fluorescence.
Lechtreck KF, Liu Y, Dai J, Alkhofash RA, Butler J, Alford L, Yang P. Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. Elife. 2022 Jan 4;11:e74993. doi: 10.7554/eLife.74993. PMID: 34982025; PMCID: PMC8789290.
CC-5805 armc2::ARMC2-Sca mt-
$30.00
$30.00
From Pinfen Yang, Marquette University, February 2022
The strain was generated by glass-beads transformation into the CLiP mutant armc2 (LMJ.RY0402.155726) of a plasmid conferring hygromycin-resistance and coding for ARMC2 carrying the fluorescent protein mScarlet. It was selected for hygromycin, flagellar motility and Scarlet fluorescence.
Lechtreck KF, Liu Y, Dai J, Alkhofash RA, Butler J, Alford L, Yang P. Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. Elife. 2022 Jan 4;11:e74993. doi: 10.7554/eLife.74993. PMID: 34982025; PMCID: PMC8789290.
CC-5806 pf14pf27
$30.00
$30.00
From Pinfen Yang, Marquette University, February 2022
This double mutant was recovered as a paralyzed progeny of a nonparental ditype tetrad from a cross of pf14 (CC-613, mt-) and pf27 (CC-1387, mt+).
Lechtreck KF, Liu Y, Dai J, Alkhofash RA, Butler J, Alford L, Yang P. Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. Elife. 2022 Jan 4;11:e74993. doi: 10.7554/eLife.74993. PMID: 34982025; PMCID: PMC8789290.
CC-5807 pf14armc2 mt-
$30.00
$30.00
From Pinfen Yang, Marquette University, February 2022
This double mutant was recovered as a paralyzed progeny of a nonparental ditype tetrad from a cross of pf14 (CC-1023, mt+) and armc2 (LMJ.RY0402.155726). It is paromomycin resistant.
Lechtreck KF, Liu Y, Dai J, Alkhofash RA, Butler J, Alford L, Yang P. Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. Elife. 2022 Jan 4;11:e74993. doi: 10.7554/eLife.74993. PMID: 34982025; PMCID: PMC8789290.
From Pinfen Yang, Marquette University, February 2022
The strain was generated by glass beads-transformation into pf14armc2 mt- of a plasmid conferring Hygromycin-resistance and coding for ARMC2 carrying a triple tag including NeonGreen, 3 HA and 6 His. It was selected for hygromycin and NeonGreen fluorescence.
Lechtreck KF, Liu Y, Dai J, Alkhofash RA, Butler J, Alford L, Yang P. Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. Elife. 2022 Jan 4;11:e74993. doi: 10.7554/eLife.74993. PMID: 34982025; PMCID: PMC8789290.
From Pinfen Yang, Marquette University, February 2022
The strain was generated by glass beads-transformation into pf14pf27 of a plasmid conferring Hygromycin-resistance and coding for ARMC2 carrying a triple tag including NeonGreen, 3 HA and 6 His. It was selected for hygromycin and NeonGreen fluorescence.
Lechtreck KF, Liu Y, Dai J, Alkhofash RA, Butler J, Alford L, Yang P. Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. Elife. 2022 Jan 4;11:e74993. doi: 10.7554/eLife.74993. PMID: 34982025; PMCID: PMC8789290.
CC-5811 cia8
$30.00
$30.00
From Jim Moroney, Louisiana State University, February 2022
Cia8 is an insertional mutant missing a chloroplast transport protein. It has a mild CCM phenotype, meaning it grows slightly worse than wild-type cells at low CO2. It is typically maintained on TAP in constant low light. It is not sensitive to the dark like the CAH4 RNAi lines.
Machingura MC, Bajsa-Hirschel J, Laborde SM, Schwartzenburg JB, Mukherjee B, Mukherjee A, Pollock SV, Förster B, Price GD, Moroney JV. Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in Chlamydomonas reinhardtii. J Exp Bot. 2017 Jun 1;68(14):3879-3890. doi: 10.1093/jxb/erx189. PMID: 28633328; PMCID: PMC5853530.
From Susan Dutcher, Washington University in St. Louis, March 2022
Single colony isolate of CC-3079 Quebec isolate M3-53B2 mt- used by the Chlamydomonas Pan-Genome project.
From Susan Dutcher, Washington University in St. Louis, March 2022
Single colony isolate of CC-1009 wild type mt- (UTEX 89) used by the Chlamydomonas Pan-Genome project.
From Susan Dutcher, Washington University in St. Louis, March 2022
Single colony isolate of strain 7P, which is a 4x backcross of CC-125 to CC-124 used by the Chlamydomonas Pan-Genome project.
From Susan Dutcher, Washington University in St. Louis, March 2022
Single colony isolate of CC-1010 wild type mt+ (UTEX 90) used by the Chlamydomonas Pan-Genome project.
- «Previous Page
- 1
- …
- 118
- 119
- 120
- 121
- 122
- …
- 131
- Next Page»